If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2+6z=180
We move all terms to the left:
2z^2+6z-(180)=0
a = 2; b = 6; c = -180;
Δ = b2-4ac
Δ = 62-4·2·(-180)
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{41}}{2*2}=\frac{-6-6\sqrt{41}}{4} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{41}}{2*2}=\frac{-6+6\sqrt{41}}{4} $
| -6h^2-h+3=0 | | 4(8x+7)=188 | | g÷1/5=11/4 | | 3.6=2p | | 12.5d=13.3d+15.12 | | 4t-4=t^2 | | 3x(8x+9)=0 | | 45+12.5x=75+7.5x | | -6x+6*9/4=6 | | 10-3D=d-10 | | 5^x+1=41 | | 8x+39=-3(-6-4x) | | w/4+20=22 | | 10j-19j+10j=13j | | 9^4x+1=27^x | | -7h-20=16-9h | | 4t=-32=-44 | | -4x²-10=-5x²-1 | | 10v-14=6 | | 16q=15.1q-5.04 | | 6x+2–2x=x+8 | | (2x)+42=90 | | 10+3(m-2)=8 | | -9q-20=-13q+20 | | E) 6x+2–2x=x+8 | | u=2u+13 | | 4=4+14t-5t^2 | | 80=4(h-57) | | -6x+6*21/4=6 | | 12z-(-17)+-16+-16=6 | | (u+8)(u−8)=0 | | 7.2=m/2 |